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In this paper a variational formulation of optimization problems for mechanical
elements like bars or plates, subjected to a parametric excitation force, periodic in
time is given. Objective functions characterizing the parametric resonance are
introduced. The paper deals with the problem of "nding the control
function*function of the shape (the area of cross-section of the beam or the
thickness of the plate) which maximizes or minimizes one of the objective functions
under the constraint of constant volume. In some cases the optimization problems
under conditions of parametric resonance resolve into optimization problems with
respect to natural frequency. The examples of variational optimization against loss
of stability are solved and analyzed in the state of parametric periodic resonance.

( 1999 Academic Press.
1. INTRODUCTION

Usually, the resonances in mechanical systems are undesirable phenomena}
especially parametric resonance is very dangerous. There are many items in the
literature (references, monographs, books) dealing with the topics mentioned
above [1}6]. The Mathieu}Hill di!erential equation describing parametric
resonances is often encountered in engineering and physics problems: see e.g.
references [1, 7}9].

The aim is to avoid the resonance states or to minimize their disadvantageous
e!ects. One of the methods leading to this is optimal structural design, in which
a range of frequency without resonances is maximized. However, if such
a procedure does not lead to avoiding the resonance phenomena, then the
resonance e!ect should be minimized by optimization of some measures of the
phenomenon*some objective functions.

In references [10, 11] the parametrical and variational optimization problems for
a simply supported beam subjected to a longitudinal force periodic in time were
formulated. The author looked for approximate solutions in the steady state of
parametric resonance of non-prismatic rods or bars in the form of a series of
unknown eigenfunctions of a non-prismatic rod. Galerkin's method gives a set of
ordinary di!erential equations with coe$cients which are periodic in time. Some
coe$cients also depend on a function of the shape.
0022-460X/99/400873#18 $30.00/0 ( 1999 Academic Press
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The results presented in reference [11] were generalized for a beam with other
boundary conditions and for high-dimensional elements, e.g. the optimization of
parametrically excited plates problems in a monograph [12].

In the present paper, the problems discussed in the monograph, reference [12],
are continued. The mechanical elements under consideration are made of
Kelvin}Voigt viscoelastic material. The variational and parametric optimization of
parametrically excited systems against a loss of stability are explained and
discussed. Problems of systems optimization in periodic parametric resonance are
reduced to static considerations. Examples of variational optimization of
parametrically loaded beams with respect to the loss of stability also with
geometrical constraints are solved and presented.

2. PARAMETRICALLY EXCITED SYSTEMS*EQUATIONS OF MOTION

The equation of motion of &&non-prismatic'' parametrically excited elastic
elements has the form cf. [1]

MK (h) C
L2w
Lt2 D#SK (h)[w]#b (t)PK b[w]"0, (1)

where h is the vector of control functions or the vector of parameters of shape (e.g.
area of the cross-section or the thickness of the plate); MK , SK , PK b are the inertia,
elasticity and stability linear operators. The form of these operators depends on the
kinds of mechanical elements to be considered, w(x, t) is a transverse displacement
of the vibrating system, b(t) generally denotes the parametric load of vibrating
elements (e.g. linear force density q (N/m) for continuous for continuous parametric
load on the edge of the plate, or longitudinal force P(t) (N) acting on the beam)
which is a periodic function of t.

An approximate solution of equation (1) is sought in the form of a series
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where /
k

are the eigen functions of [SK (h)!u2MK (h)]/"0, f
k
(t) are the unknown

functions of time. The functions /
k

will not be found before the optimization
procedure. Applying Galerkin's method one obtains a system of ordinary
di!erential equations of the second order in the matrix form, cf. references [1, 12]
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#[S(h)#b (t)Pb]f"0, (3)

where M, S, Pb are, respectively, the inertia, elasticity and parametric excitation
matrices which depend on the functions or on the parameters of shape, f is the
column matrix of the generalized co-ordinates. The elements of the matrices are
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Now one can introduce the matrices: B(h)"S~1Pb , C(h)"S~1M (cf. reference
[1]).

Continuing, one introduces the damping matrix E . Now problem (1) is described
by a system of ordinary equations

d2f
k

dt2
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k
(h)

d f
k

dt
#u2

k
(h) C f

k
#b (t)
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+
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[SK (h)!u2MK (h)]/(h)"0, (6)

where

u2
k
"

(/
k
, SK (h)[/

k
])

(/
k
, MK (h)[/

k
])
"

J (k)
2

J (k)
1

(7)

are the eigenvalues of the problem of natural vibrations (6) (unknown until the
optimization procedure), C~1"diag[u2], B

kj
are elements of matrix B, e

kk
"e

k
are

the damping matrix elements. The matrix E is a function of C. The form of damping
matrix must be determined, for the analyzed element, on the basis of theory and
experiments. One can prove, e.g., for the Kelvin}Voigt linear viscoelastic material
that matrix E is diagonal and its elements are proportional to C~1 and e

k
"qu2

k
(cf. references [1, 12, 13]). The detailed analysis of the in#uence of damping models
on the optimization of parametrically excited system is given in section 4.
Equations (5) are a set of coupled linear equations with variable coe$cients. One
may distinguish two types of instability of the trivial solution of equations(5); the
periodic (simple) parametric resonance which occurs in the neighbourhood of the
frequencies:

h"2u
0s

/k, k"1 ,2, 3,2 ,

the combination parametric resonance which occurs in the neighbourhood of the
frequencies:

h"(u
0s
$u

0p
)/k, k"1, 2, 3,2 , sOp.

Consideration will be con"ned to periodic parametric resonance only. When the
matrix B(h)"S~1P

b
is also diagonal, the analyzed systems are described by

a non-coupled set of Mathieu}Hill equations
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(9)

are the eigenvalues of the eigenvalue problem of static stability and the quantities
e
k
, u

k
, B

k
depend on the function of shape. To simplify further considerations, only

the "rst term of series (2) is taken into account (one Mathieu}Hill equation) and the
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discussion con"ned to periodic parametric resonance (the "rst type of instability)
only. Taking b (t)"b

0
#b

t
cos ht, after some transformations one has
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Next, one can transform equation (10) to the form (cf. reference [12])
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where for the kth mode (kth form of vibration)
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for non-prismatic elements by analogy to that for a prismatic one. The quantity
k
k
*the parameter of excitation}was introduced by Bolotin in reference [1] for

parametric excitation: P(t)"P
0
#P cos ht, acting on prismatic beam*i.e. with

constant area of cross-section h. In formula (12) h may depend on x, y, z.

3. SOLUTIONS OF EQUATIONS OF MOTION AND STABILITY

The most popular and very e!ective method of receiving the instability region
and amplitudes is Bolotin's method. In applying it one "rst assumes the solution at
the stability limits to be of the form of a truncated Fourier series, and next the
harmonic balance method is applied. So the solution with the period 2¹(¹"2n/h)
is assumed in the form

f (t)"
=
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k/1,3,5,2
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2
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k
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2 B , (13)

and the solution with the period ¹ in the form
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The non-zero solution of the linear equation (5) exists if the proper determinants
are equal to zero (cf. reference [1]):

= (2T)
=

"F[h, E, b
t
B

ij
(h))"0, = (T)

=
"F @[h, E, b

t
B
ij
(h))"0. (15,16)

On the basis of the general theory of di!erential equations with variable
coe$cients one concludes that on the boundary of the "rst instability region the
periodic solution with the period 2¹ exists. Now assume the solution of equation
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(11) to be of the form (cf. reference (13))

f
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k
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. (17)

Inserting this function into the "rst of equations (11) and comparing the coe$cients
of sin ht/2 and cos ht/2 one gets a system of algebraic equations for the coe$cients.
The non-zero solution of these equations exists if the determinant equals zero.
Solving it and neglecting the higher powers of D(h)/n, one has

h:2X(h)J1$Jk2 (h)!(D(h)/n)2, (18)

where
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is a decrement rate of the vibration for the non-prismatic element loaded by the
constant part of the parametric excitation b

0
, b

#3
:!1/B

k
(cf. reference (9)), the

quantity X"X
1

is de"ned in equation (12).

4. OBJECTIVE FUNCTION

The main purpose of the paper is to determine and de"ne the proper measures of
periodic parametric resonance. These measures are the objective functions in the
variational optimization procedure. Four physically motivated quantities
characterizing parametrically excited systems are introduced.

The periodic parametric resonance occurs if in the parametrically exciting system
the proper relations between the frequency of external excitation h and natural
frequencies take place. The most dangerous, main parametric periodic resonance
occurs in the neighborhood of the doubled value of the "rst natural frequency
h"2u. The square of the "rst natural frequency is the proper objective function in
the optimization procedure when one maximizes the non-resonance region
0)h)2u. The objective function has the form of the non-additive functional
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cf. reference (4). If one analyzes the transverse vibrations of non-prismatic beams
the operators MK (h), SK (h) take the forms (cf. references (1) and [11])

MK (h)"o (x)h(x), SK (h)"
L2

Lx2 CKaha
L2

Lx2D , (22)

where h (x) is the area of cross-section of the beam, Ka"EAa , E is Young's
modulus, Aa is a constant connected with the geometry of cross-section and
depending on a (a"1, 2, 3), and o is the mass density. The function of state /

1
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satis"es the equation of state of natural transverse vibrations of the non-prismatic
rod without damping:

d2

dx2 CKaha (x)
d2/
dx2D!oh(x)u2/(x)"0. (23)

The present paper is devoted to the optimization problems of mechanical
systems described by the equations of motion in modal form with damping
proportional to d f

k
/dt ; cf. equation (5). For one mode the equation of motion takes

form (11). Formula (18) gives the boundary of the instability region in the (k, h/2X)
plane, see Figure 1. If the expression under the inner square root is positive, formula
(18) gives two real values of critical frequency. On the basis of formula (18) the
critical value of the excitation parameter denoted by k* is (cf. references [1, 11, 12])
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where D(h) is de"ned in equation (19). So k* is the special value of k which
characterizes the energy dissipation in parametric systems (cf. reference [1]) and
depends also on other material properties like E and o. In this paper 2e(C(h)) is
generally some function of the matrix C"S~1M, and its form must be determined
for the analyzed element on the basis of theory and proper experiments. Most often
from experiments one gets the decrement of damping d and coe$cient of decay
c (coe$cient of loss of energy). For a Kelvin}Voigt viscoelastic material and for
parametric excitation one usually adopts a damping matrix D [13] which is
proportional to the matrix of elasticity S; D"c(h)S/h, where the coe$cient of loss
of energy c(h) is some function of frequency of the external excitation h. In the
present example of parametric resonance h"2u and c"hg/E. The coe$cient
Figure 1. Instability region in the (k, h/2X) plane, where k* is the critical value of the excitation
parameter, and S (h) the area of the part of the instability region enclosed between k* and 2k*.
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c may depend also on temperature and some other parameters of the material.
These dependences are in the form of graphs. The adopted model is useful when the
mentioned parameters are constant. In these examples D"gS/E and
2E"M~1D"gM~1S/E"gC~1/E. So for Kelvin}Voigt viscoelastic material
(2e"qu2), one has
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(cf. equation (4)). If one analyzes the

transverse vibrations of non-prismatic beams the operators MK (h), SK (h) take form
(22) and the operator PK b (h)"L2/Lx2 . The square of the critical value of the
excitation parameter as the objective function is introduced. If additionally b
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one has
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) is de"ned in equation (20).

Now a parametrically excited system will be analyzed in the (b
t
, h/2X) plane. On

the basis of equation (12) the amplitude of the oscillating part of parametric
excitation is b
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For k'k* or for b
t
'b*

t
the region of instability appears. If one analyzes the

transverse vibrations of non-prismatic beams the operators MK (h), SK (h) take form
(22) and the operator PK b(h)"L2/Lx2 .

The optimization problem against the loss of dynamic stability of the
parametrically excited beam consists of determining the area h of the cross-section,
which extremizes the critical value of excitation parameter k* or the critical value of
amplitude of oscillating part of excitation b*

t
. The vibrating parametrically excited

system will be most stable if k* attains a maximum in the (h/2X, k) plane or
b*
t

attains a maximum in the (h/2X, b
t
) plane. One can see that critical parameters,

the critical value of the excitation parameter or the critical value of the amplitude of
the oscillating part of the excitation separate stable and unstable solutions (cf.
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Figure 1). Maximization of the values of the critical parameters b*
t
, k* also allows

one to move away from unstable solution regions. For such an objective function
one can control not only the geometrical parameters of optimization (parameters of
the shape) but then one may also in#uence non-stability regions through a change
of the coe$cient of damping (cf. equation (26)) and through the change of the
parameter b

0
of the external parametric load (cf equation (27).

Therefore, one has two proper measures of periodic parametric resonance, the
critical parameters: the critical value of the excitation parameter, see equations
(24}26), or the critical value of the amplitude of the oscillating part of the harmonic
excitation, see equations (27, 28). The objective functions, e.g. k*, b*

t
are of the form

of non-additive functionals.
If through the optimization it is not possible to move away from an unstable

solution region, the phenomenon of parametric resonance occurs (there exists
a non-stable solution of equation of motion), and the resonance amplitude grows to
in"nity. The non-linearities limit the growth, and the amplitudes of parametric
resonance are "nite in the region of instability ((cf. references [1, 5, 6]). In such
examples the proper objective function is the amplitude of the steady state of the
parametric resonance. Now in the optimization procedure one looks for the
minimum value of the resonance amplitude. The resonance amplitude can be
obtained on the basis of the non-linear equation of motion.

f G
k
#2e

k
(h) fQ

k
#X2

k
(h)(1!2k

k
(h) cos ht) f

k
#u

k
( f, fQ, f G )"0, (29)

where the function u
k
( f, fQ, f G ) includes non-linear e!ects, e.g. geometrical

non-linearities like non-linear damping, non-linear elasticity or non-linear inertia:
k
k
, X

k
were introduced in equation (12).

For one mode the amplitude equals (cf. reference [1])

A(k (h), h/2X(h), k*(h))"Ja2#b2"FN
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(J
1
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2
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3
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where a and b are coe$cients in equation (13). For example, for non-linear elasticity
one has
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J3c Sn2 (h)!1$S(k2 (h)!A
nD(h)

n B
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1
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1
, J

2
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3
). (31)

Now in the optimization procedure one looks for the minimum value of the
resonance amplitude determined by equation (30) or (31).

In the resonance state the other objective functions may be introduced. They are
some measures of the instability region. One of them is associated with the area S(h)
of a part of the instability region, e.g. that enclosed between k* and 2k*,
cf. references [10, 12]. The second of them is the interval of excitation frequency,
Dh(k"2k*)"2 )X )DZ for example; see Figure 1. Now in the optimization
procedure one looks for the minimum value of this measure of instability region:
cf. reference [12]. References [10}12] were devoted to the optimization of the
parametrically excited system with respect to the minimization of some measure of
the instability region.
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5. VARIATIONAL OPTIMIZATION

The optimization problem against the loss of dynamic stability consists of
determining the vector of control function h (e.g. the area of the cross-section
or the thickness of the plate or some physical parameters of vibrating elements or
its surrounding) which extremizes one of the functionals (24)}(28) or functional (30)
under some constraints * e.g. under a constant volume constraint. Variational
calculus is used to "nd the solution. The necessary conditions for extreme values
of objective function can be derived by setting to zero the "rst variation of
one of the non-additive functionals with constraints: (cf. reference [14]).
The resulting equations are called optimality conditions. To solve these
actual structural optimization problems, the equation of natural vibration with the
proper boundary conditions must be employed in addition to the optimality
conditions.

After de"ning the objective function is parametric resonance (cf. section 4), one
formulates the optimization problem against the loss of dynamic stability as
follows: look for a control function h that minimizes or maximizes the functional
denoted

J"F(J
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where OK
1
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2
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"PK b are the known operators on h; cf. equation (4). The

non-additive functionals J are
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The constraints are

F
i
(J

1
,2 ,J

n
)"c

i
"const, i"1, 2,2 , k. (36)

In the present case one looks for an approximate solution of the equation of
motion (1) in the form of a series of unknown eigenfunctions of equation (2). The
eigenfunctions*functions of state /

n
*satisfy the equation of natural transverse

vibrations of non-prismatic elements without damping, and proper boundary
conditions which are the additional constraints

¸[h (x)]/(x)"[SK (h)!u2MK (h)]/"0, [N(h (x)/(x)]C"0. (37)
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To receive the necessary conditions of optimality for non-additive functionals one
introduces the augmented Lagrange functional F de"ned by
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+
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), (38)

where F
l
are constraints (36), and j

l
are Lagrange's multipliers. Calculate the "rst

variation of the augmented Lagrange's functional
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The equation of natural transverse vibrations of non-prismatic elements without
damping and proper boundary conditions are the additional constraints. In order
to include constraints (37) one takes into account the variational form of equations
(37):

¸(h)d/#M(/, h)dh"0, N(h)d/#¹(/, h)dh"0. (41)

The operator M(/, h)"(L¸/Lh)/ stands at the variation dh in the variational
equation of state. Introducing the adjoint variables of state v expresses the "rst
variation of the functional through the variation dh only. On the basis of equation
(37) one has (see e.g. reference [14])

P
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[d/¸*(h)v#dhM* (/, h)v] dq, (42)

where the operators ¸*, M*, are the adjoint operators to ¸, M. Setting the "rst
variation of one of the non-additive functionals with constraints to zero [14}16]
gives a general form of the equation of state for the adjoint variable and the
necessary conditions of optimality for non-additive functionals in the form
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where f
l
"f

l
(x, h, /, /@, /A). The "rst of equation (43) is the equation of state for the

adjoint problem; the second one represents the optimality condition.
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6. EXAMPLES

In the examples of optimization of parametrically excited systems the critical
value of the excitation parameter k* determined by equation (24) is the objective
function. The parametrically excited system will be most stable if in optimizing with
a constant volume constraint and some additional constraints (e.g. geometrical) k*
attains a maximum. The system will be optimized with respect to k*2.

As examples, the optimization of parametrically excited beams, with di!erent
boundary conditions are considered. The equation of motion of a Kelvin}Voigt
viscoelastic beam takes the form, cf. equation (1),

L2

Lx2 CKaha
L2w
Lx2

#qKaha
L3w

Lx2 LtD#oh(x)
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Lt2

#b (t)
L2w
Lx2
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where w(x, t) is a transverse displacement of the cross-section x at the time t,
b(t)"b

0
#b

t
cos ht is a longitudinal force, q"g/E, and g is the coe$cient of

internal damping. The remaining parameters are introduced in equation (22).
On the basis of section 2, an approximate solution of the above problem is

sought by applying the Galerkin method in the form of a series of unknown
eigenfunctions /

i
of equation (23) of the non-damped natural vibrations of the

&&non-prismatic'' elements:

w"

N
+
k/1

f
k
(t)/

k
(x). (45)

After some transformations one has for one mode (cf. references [11, 12])

f G#2e f Q#X2(1!2k cos ht ) f"0,

where the coe$cient of damping is

2e"qJ
2
/J

1
,

X2"u2(1!b
0
/b

cr
), u2"J

2
/J

1
,

J
1
"oP

l

0

h (x)[/
1
]2dx, J

2
"Ka P

l

0

ha(x) C
L2/

1
Lx2 D

2
dx.

Taking into account the assumption b
0
"0 one has b(t )"b

t
cos ht. On the basis of

the procedure described in section 4, the objective function has form (26). So in the
optimization procedure one looks for the maximum of the functional

J"F (J
1
, J

2
)"(k*(h))2"q2u2"q2AKa P

l

0

haC
L2/

1
Lx2 D

2
dxNAo P

l

0

h (x)[/
1
]2dxB

(46)

where o, h(x), E, Ka"EAa , q"g/E and the length of the beam l are the physical
and geometrical parameters. The area of cross-section of the beam h (x) is taken as
the control function in the optimization procedure.
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After de"ning the objective function (46) (cf. section 4) and the control function,
the optimization problem against the loss of dynamic stability is formulated as
follows.

Look for such a control function h that maximizes functional (46) with the
constraints

(1) isoperimetric condition of constant volume <
0

of the beam,

F
1
(J

1
, J

2
)"P

l

0

h (x) dx"<
0
, (47)

(2) the equation of state in the form

d2

dx2 CKaha(x)
d2/
dx2D!o (x)h (x)u2/(x)"0, (48)

(3) the boundary conditions, e.g. for a simply supported beam

/(0)"Cha (x)
d2/
dx2D

x/0

"0, /(l )"Cha(x)
d2/
dx2D

x/l

"0,

for a simply supported}"xed beam

/(0)"Cha(x)
d2/
dx2D

x/0

"0, /(l )"C
d/
dxD

x/l

"0 (49)

for a "xed}"xed beam

/ (0)"C
d/
dxD

x/0

"0, /(l )"C
d/
dxD

x/l

"0 (cf. Figure 2),
Figure 2. The parametrically excited vibrating beams*examples for two di!erent boundary
conditions.
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(4) additionally in some examples the area of cross-section h (x) ful"lls the
inequalities

h
1
)h (x))h

2
, (50)

where h
1
, h

2
are constant or generally also some known functions of x. One can

adopt the proper values of constraints arising, e.g. from the strength conditions),
(5) the remaining parameters E, Aa , o, g, l are constants in the optimization

processes, cf. equations (46)}(49); in the examples the beams are cylindrical and
have similar cross-sections, the moment of inertia equals I"ch2, where c is
a constant.

In the optimization procedure the control function h (x) and the function of state
/
1
(x) are sought.
On the basis of equation (46) the parametrically excited beams are most stable if

the value of the natural frequency u is a maximum (the values of damping g and E,
o, l, <

0
are "xed).

The examples of optimization are divided into two groups of problems:
I. optimization without geometrical constraints; II. optimization with geometrical
constraints.

In optimization without geometrical constraints variational calculus is used to
"nd the solution. On the basis of equation (46) the optimization of parametrically
vibrating beams with respect to the maximum of the critical value of k* converts
itself into optimization problems with respect to the maximum of the natural
frequency. By the conclusion of the papers of Banichuk, Niordson, and Olho! [14,
17, 18] one has the values of the quantity u

.!9
/u

pr
, where u

max
is the maximal

(optimal) value of the beam's "rst frequency, u
pr

denotes the "rst natural frequency
of prismatic beam with the same physical parameters: density o, Young's modulus
E and with the same constant parameters g, <

0
, l. On the basis of equation (46) one

immediately has the quotient of optimal (maximal) value of excitation parameter to
the value of excitation parameter for prismatic beams, k*

max
/k*

pr
, for the "rst mode of

vibration and for the same constant parameters. One also has the relative change of
the excitation parameter in per cent, (Dk*/k*

pr
)]100%.

Numerical calculations depend on the boundary conditions. For example, for
a cylindrical, simply supported beam, the square of the optimal value of the "rst
natural frequency and the square of the prismatic beam equals u2

max
"110)66 G,

u2
pr
"n4 G, G"E</4nol3 (cf. reference [11]).

So one has (cf reference [18]),

for a simply supported beam k*
max

/k*
pr
"1)066, Dk*/k*

pr
"6)6%;

for a simply supported}"xed beam k*
max

/k*
pr
"1)57, Dk*/k*

pr
"57%; and

for a "xed}"xed beam, k*
max

/k*
pr
"4)32, Dk*/k*

pr
"332%.

The optimal shapes and the eigenfunctions (forms of the vibration) of the beams are
presented in Figure 3 (cf. reference [18]).

Under some assumptions the optimization of the parametrically vibrating beams
with respect to the maximum of the critical value k* is resolved into an
optimization problem with respect to the maximum of natural frequency and the



Figure 3. The shape of the beams and the forms of vibrations of optimal elements: (a) for a simply
supported beam; (b) for a simply supported}"xed beam; (c) for a "xed}"xed beam; cf. reference [18].
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equation of natural transverse vibrations of a non-prismatic rod is the important
constraint in the optimization. This equation,

¸[h(x)]/(x)"0 f [SK (h)!u2MK (h)]/"0 (51)

describes the Euler}Bernoulli beam (the shear deformations and rotary inertia are
neglected). It is assumed that the transverse dimension of the beam is small in
comparison with the length of the beam. If the transverse dimensions are
comparable with the length, the more exact Timoshenko beam theory is suitable
(cf. reference [1]). This theory is particularly important in optimization with respect
to higher natural frequency.

In the next group of examples * in optimization problems of parametrically
excited beams with geometrical constraints* Pontryagin's maximum principle is
used. The optimization of a parametrically excited non-prismatic beam with
additional geometrical constraints with respect to the maximum of the square of
critical value of exciting parameter k* is considered. Under the above-mentioned
assumptions this problem is converted into an optimization problem with respect
to the maximum also of the natural frequency. Griniew and Filippow [19]
presented the extreme values of the natural frequencies of beams for di!erent
boundary conditions and for di!erent values of constant volume. In Figure 4, taken
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from the book by Griniew and Filippow [19], the results for beams with a circular
cross-section are presented. In this case the constraints are that the length and
volume of the beam are constant and additionally the area of cross-section h(x)
ful"lls the inequalities h

1
)h(x))h

2
, where h

1
, h

2
are constant. One can adopt the

proper values of constraints arising, e.g. from the strength conditions. In our
examples the parameters of the beams are l"1)2 m, h

1
"4]10~4m2, h

2
"2h

1
,

E"1)96]1011 N/m2, o"7)8]103 kg/m3. In Figure 4, the quotient of dimension-
less optimal (maximal or minimal) circular frequency u

max(min)
, to circular

frequency u
1

of prismatic beam with the area of cross-section h
1
, versus the
Figure 4. The quotient of u
max(min)

/u
1

versus the quotient of the volume </<
`

and the shapes are
presented for circular cross-section beams; (a) simply supported; (b) simply supported}"xed; (c)
"xed}"xed; cf. reference [19]. The parameters of circular beams are l"1)2 m, h

1
"4]10~4 m2,

h
2
"2h

1
, E"1)96]1011 N/m2, o"7)8]103 kg/m3.
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quotient of the volume V, to the maximum value of volume <`":1
0

h
2
dx"h

2
l is

presented in the form of closed curves. The upper parts of the curves (BCD) present
the maximal values of u

max
/u

1
(u

1
"u(h

1
)) in optimization with di!erent values of

constant volume. In the lower part of the graph (DAB) the minimum values of
u

min
/u

1
in optimization with di!erent values of constant volume are presented. The

numerical results depend on the boundary conditions. According to the conclusion
of Griniew and Filippow [19], one has the values of u

max
/u

1
and after some simple

calculations obtains u
max

/u
pr

where u
max

is the maximal (optimal) value, u
pr

(h)
denotes the "rst natural circular frequency of a prismatic beam with the same
constant parameters (<, l, density o, and Young's modulus E). The cross-sectional
areas are similar, the moment of inertia I"ch2. Next, on the basis of equation (50)
the ratio k*

max
/k*

pr
of optimal (maximal) value of the excitation parameter to the

value of the excitation parameter for &&prismatic'' beams for the "rst mode and for
the same constant parameters is derived. One also has the relative change of the
excitation parameter in percent, (Dk*/k*

pr
)]100%. Numerical calculations depend

on the boundary conditions.
For example, the maximal value of u

max
/u

1
(u

1
"u (h

1
)) for a simply supported

beam is (u
max

/u
1
)
max

"1)375 (Figure 4(a)). Because for this value of u
max

/u
1
,

</<
`
"0)9375, the constant volume <"<

`
0)9375"2h

1
l]0)9375"hl. where

h"2h
1
]0)9375. After simple calculations one has u

h
"u

h1
Jh/h

1
, where u

h
and

u
h1

are the natural frequencies of prismatic beams with constant area of
cross-sections h and h

1
respectively and

u
max

/u
pr

(h)"u
max

/u
1
(h

1
)Jh

1
/h"1)375Jh

1
/h. (52)

Therefore on the basis of Figure 4, one has for maximal values of u
max

/u
1
,

for a simply supported beam k*
max

/k*
pr
"1)0045 and Dk*/k*

pr
"0)45%,

for a simply supported}"xed beam k*
max

/k*
pr
"1)045 and Dk*/k*

pr
"4)5%, and

for a "xed}"xed beam k*
max

/k*
pr
"1)18 and Dk*/k*

pr
"18%.

The strength constraints can be connected with the geometrical constraints. The
appropriate shaping of beams increases the critical value of the excitation
parameter. The examples of optimizations of parametrically excited systems
(beams) for b

0
O0 may be analyzed in a numerical way. In this case the

optimization with respect to critical value of k* does not resolve into an
optimization problem with respect to maximum of natural frequency.

The present paper is devoted to the optimization problems of mechanical
systems described by the equations of motion in modal form with damping
proportional to d f

k
/dt, cf. equation (5). For one mode the equation of motion takes

the form (11). The purpose before the optimization procedure is to determine
the form of the coe$cient 2e. On the basis of considerations of section 4 one can
adopt in the above examples 2E"M~1D"gM~1S/E"gC~1/E (for a beam see
page 883).

So for a Kelvin}Voigt viscoelastic material 2e"qu2, cf reference [13]. One may
also adopt other models of damping: e.g., the proportional model 2e"a#bu2,
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where a, b are constants, cf. references [13, 21]. References [1, 20, 21] are devoted
to the detailed analysis of the damping model of elements of construction. Because
of the model of vibration adopted in the present paper the method of optimization
of parametrically excited systems does not apply immediately to an integral model
of damping, cf. reference [20]. Adoption of an integral model needs some additional
consideration and calculation. Apart from the model adopted in the paper the
examples of optimization with other models of damping may be analyzed only in
a numerical way*the optimization with respect to critical value of k* does not
convert into optimization problems with respect to the maximum of natural
frequency.

7. CONCLUSIONS

The variational optimization against the loss of dynamic stability may be carried
out with account taken of a few aspects of the problem and various cost functions.
In this paper, only one of the objective functions, most important in parametrically
excited systems, namely the critical value of the excitation parameter k*,
determined by equation (26), is taken into account.

In this optimization, the following assumptions have been accepted. The length
and volume are constant and the linear theory of vibration is valid. The equation of
state and boundary conditions are the additional constraints. The material
characteristics*density, Young's modulus and coe$cient connected with
damping*are "xed. On the basis of these assumptions, for the suitable shaping of
the beam (for the optimal value of cross-section area) the critical value of the
excitation parameter k* attains a maximum, and the parametrically excited system
is most stable (cf. Figure 1). For the case k'k* a region of instability appears. The
objective function k* is of the form of non-additive functionals.

In some cases, when the constant component of excitation equals zero (b
0
"0)

and for the Kelvin}Voigt viscoelastic material, the functional k* is proportional to
the square of the natural frequency. So the necessary optimality conditions for the
element with constant damping are the same as the optimality conditions for the
square of natural frequency. The optimization of the system with respect to the
square of natural frequency is a well-known problem and it enables one to
immediately obtain numerical results for the problems. Optimization is a way of
stabilizing a parametrically excited object. One can increase the excitation
parameter several times or 10 times in optimization with geometrical constraints
and 10 times or hundreds of times in optimization without geometrical constraints.
In the next publication the numerical results of considerations concerning beams of
Kelvin}Voigt model and b

0
O0 will be given. In this case the optimization with

respect to the critical value of k* does not convert into an optimization problem
with respect to the maximum of natural frequency.

In optimization problems of parametrically excited systems one can also look for
such values of the amplitude of the oscillating part of the parametric excitation
b*
t

for which the unstable solution occurs. The optimization of parametrically
excited systems with respect to a maximum of b*

t
is physically most important and

may be the subject of next consideration.
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